首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   757篇
  免费   41篇
  国内免费   215篇
化学   404篇
晶体学   2篇
力学   34篇
数学   307篇
物理学   266篇
  2024年   1篇
  2023年   21篇
  2022年   10篇
  2021年   17篇
  2020年   12篇
  2019年   27篇
  2018年   9篇
  2017年   21篇
  2016年   18篇
  2015年   23篇
  2014年   42篇
  2013年   73篇
  2012年   56篇
  2011年   50篇
  2010年   48篇
  2009年   66篇
  2008年   66篇
  2007年   65篇
  2006年   54篇
  2005年   42篇
  2004年   32篇
  2003年   40篇
  2002年   30篇
  2001年   16篇
  2000年   19篇
  1999年   12篇
  1998年   10篇
  1997年   24篇
  1996年   19篇
  1995年   19篇
  1994年   11篇
  1993年   8篇
  1992年   10篇
  1991年   9篇
  1990年   7篇
  1989年   7篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1013条查询结果,搜索用时 687 毫秒
41.
This article reports an investigation of 251 high school mathematics teachers’ meanings for slope, measurement, and rate of change. The data was collected with a validated written instrument designed to diagnose teachers' mathematical meanings. Most teachers conveyed primarily additive and formulaic meanings for slope and rate of change on written items. Few teachers conveyed that a rate of change compares the relative sizes of changes in two quantities. Teachers’ weak measurement schemes were associated with limited meanings for rate of change. Overall, the data suggests that rate of change should be a topic of targeted professional development.  相似文献   
42.
The redistribution of the channeled ion flux in the transverse plane has been examined. General formulae describing the flux peaking effect are obtained. Main factors on which the effect depends are investigated. An analysis is made of back-scattering experiments. The study has been made for the axial and planar channeling.  相似文献   
43.
In this paper the results of structural analysis of the SnO2 and In2O3 films deposited by spray pyrolysis are presented. The main goals of this analysis are summarizing the results obtained in this field, highlighting a correlation between parameters of film deposition and the material structure and formulating some general regularities, typical for metal oxides. Peculiarities and mechanisms of pyrosol deposition as well as advantages and disadvantages of this technology for deposition of the films with required parameters were also discussed. It is shown that this technology has great potential for controlling structural parameters of metal oxides such as thickness, the grain size, texturing, roughness, the grain faceting and the porosity.  相似文献   
44.
A cobalt-poor or iron rich bicomponent mixture of Co0.9Fe2.1O4/Fe2O3 and Co0.8Fe2.2O4/Fe2O3 anode materials have been successfully prepared using simple, cost-effective, and scalable urea-assisted auto-combustion synthesis. The threshold limit of lower cobalt stoichiometry in CoFe2O4 that leads to impressive electrochemical performance was identified. The electrochemical performance shows that the Co0.9Fe2.1O4/Fe2O3 electrode exhibits high capacity and rate capability in comparison to a Co0.8Fe2.2O4/Fe2O3 electrode, and the obtained data is comparable with that reported for cobalt-rich CoFe2O4. The better rate performance of the Co0.9Fe2.1O4/Fe2O3 electrode is ascribed to its unique stoichiometry, which intimately prefers the combination of Fe2O3 with Co1−xFe2+xO4 and the high electrical conductivity. Further, the high reversible capacity in Co0.9Fe2.1O4/Fe2O3 and Co0.8Fe2.2O4/Fe2O3 electrodes is most likely attributed to the synergistic electrochemical activity of both the nanostructured materials (Co1−xFe2+xO4 and Fe2O3), reaching beyond the well-established mechanisms of charge storage in these two phases.  相似文献   
45.
46.
In this paper we are interested in developing constitutive equations for fiber-reinforced nonlinearly viscoelastic solids. It has been shown that constitutive equations for such bodies can be expressed in terms of a complete minimal set of 18 classical invariants associated with deformation and fiber orientation. In this paper, we give an alternative formulation using a set of spectral invariants. It is shown via the use of spectral invariants that only 11 of the 18 classical invariants are independent. We analyze the spectral invariants for two illustrative deformation gradients: (i) simple tension, and (ii) simple shear.  相似文献   
47.
48.
The new design of the photocatalytic reactor is crucial to study for improving compatibility and scaling up the operation. A compatible loop photocatalytic reactor has been designed and used for rhodamine B decomposition. The photocatalysts were either ZnO or Fe-ZnO immobilized onto fiberglass cloth. The ZnO catalyst exhibited high crystallinity with or without Fe as the dopant. The crystallite size increased with the presence of Fe in the lattices. Most of the crystal parameters matched the standard ZnO data, and the cluster size was comparable to most reported studies. Diffuse Reflectance Spectroscopy (DRS) analysis confirmed the photon absorption shifted to the visible light range. The Fe dopant decreased the ZnO bandgap, and SEM-EDS confirmed the catalysts adhered to the fiberglass surface. The volume, thickness of the substrate solution, and reaction temperature influenced the photocatalytic-degradation rate. The photocatalytic degradation rate was higher under sunlight than ultraviolet irradiation. The reaction rate was lower in the batch reactor than in the loop reactor. The photocatalytic reaction almost completely mineralized RhB and changed the red solution to colorless. The immobilized photocatalyst has been reused more than 50 times without significantly decreasing the catalytic activity.  相似文献   
49.
The product branching ratio between different products in multichannel reactions is as important as the overall rate of reaction, both in terms of practical applications (\emph{e.g}. models of combustion or atmosphere chemistry) in understanding the fundamental mechanisms of such chemical reactions. A global ground state potential energy surface for the dissociation reaction of deuterated alkyl halide CD\begin{document}$ _3 $\end{document}CH\begin{document}$ _2 $\end{document}F was computed at the CCSD(T)/CBS//B3LYP/aug-cc-pVDZ level of theory for all species. The decomposition of CD\begin{document}$ _3 $\end{document}CH\begin{document}$ _2 $\end{document}F is controversial concerning C\begin{document}$ - $\end{document}F bond dissociation reaction and molecular (HF, DF, H\begin{document}$ _2 $\end{document}, D\begin{document}$ _2 $\end{document}, HD) elimination reaction. Rice-Ramsperger-Kassel-Marcus (RRKM) calculations were applied to compute the rate constants for individual reaction steps and the relative product branching ratios for the dissociation products were calculated using the steady-state approach. At the different energies studied, the RRKM method predicts that the main channel for DF or HF elimination from 1, 2-elimination of CD\begin{document}$ _3 $\end{document}CH\begin{document}$ _2 $\end{document}F is through a four-center transition state, whereas D\begin{document}$ _2 $\end{document} or H\begin{document}$ _2 $\end{document} elimination from 1, 1-elimination of CD\begin{document}$ _3 $\end{document}CH\begin{document}$ _2 $\end{document}F occurs through a direct three-center elimination. At 266, 248, and 193 nm photodissociation, the main product CD\begin{document}$ _2 $\end{document}CH\begin{document}$ _2 $\end{document}+DF branching ratios are computed to be 96.57%, 91.47%, and 48.52%, respectively; however, at 157 nm photodissociation, the product branching ratio is computed to be 16.11%. Based on these transition state structures and energies, the following photodissociation mechanisms are suggested: at 266, 248, 193 nm, CD\begin{document}$ _3 $\end{document}CH\begin{document}$ _2 $\end{document}F\begin{document}$ \rightarrow $\end{document}absorption of a photon\begin{document}$ \rightarrow $\end{document}TS5\begin{document}$ \rightarrow $\end{document}the formation of the major product CD\begin{document}$ _2 $\end{document}CH\begin{document}$ _2 $\end{document}+DF; at 157 nm, CD\begin{document}$ _3 $\end{document}CH\begin{document}$ _2 $\end{document}F\begin{document}$ \rightarrow $\end{document}absorption of a photon\begin{document}$ \rightarrow $\end{document}D/F interchange of TS1\begin{document}$ \rightarrow $\end{document}CDH\begin{document}$ _2 $\end{document}CDF\begin{document}$ \rightarrow $\end{document}H/F interchange of TS2\begin{document}$ \rightarrow $\end{document}CHD\begin{document}$ _2 $\end{document}CHDF\begin{document}$ \rightarrow $\end{document}the formation of the major product CHD\begin{document}$ _2 $\end{document}+CHDF.  相似文献   
50.
The unique feature of electrochemistry is the ability to control reaction thermodynamics and kinetics by the application of electrode potential. Recently, theoretical methods and computational approaches within the grand canonical ensemble (GCE) have enabled to explicitly include and control the electrode potential in first principles calculations. In this review, recent advances and future promises of GCE density functional theory and rate theory are discussed. Particular focus is devoted to considering how the GCE methods either by themselves or combined with model Hamiltonians can be used to address intricate phenomena such as solvent/electrolyte effects and nuclear quantum effects to provide a detailed understanding of electrochemical reactions and interfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号